Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Bis(2-aminothiazole-4-acetato)aquazinc(II)

Lai-Jun Zhang, ${ }^{\text {a,b* }}$ Xing-Can Shen, ${ }^{\text {b }}$ Yan Yang ${ }^{\mathrm{c}}$ and Hong Liang ${ }^{\text {b }}$ *

${ }^{\text {a }}$ Department of Chemistry, Shangrao Normal University, Shangrao 334001, People's Republic of China, ${ }^{\mathbf{b}}$ Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education), School of Chemistry and Chemical Engineering, Guangxi Normal University, Guilin 541004, People's Republic of China, and ${ }^{\text {c }}$ Department of Chemistry and Biology, Yulin Teachers' College, Yulin 537000, People's Republic of China
Correspondence e-mail: ljzhang@sru.jx.cn, hliang@mailbox.gxnu.edu.cn

Received 22 October 2009; accepted 29 October 2009
Key indicators: single-crystal X-ray study; $T=295 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$; R factor $=0.041 ; w R$ factor $=0.101$; data-to-parameter ratio $=17.2$.

In the title compound, $\left[\mathrm{Zn}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$, the central Zn atom (2 site symmetry) is five-coordinated by two N and three O atoms $[\mathrm{Zn}-\mathrm{N}=2.047$ (3) $\AA, \mathrm{Zn}-\mathrm{O}=2.099$ (2) and 1.974 (4) \AA] in a distorted square-pyramidal geometry. Besides one O atom from a water molecule, two 2-aminothia-zole-4-acetate ligands provide two N and two O atoms as coordinated atoms. In the crystal structure, intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds connect the molecules into an infinite three-dimensional framework.

Related literature

For the pharmacological activity of potential metal-based drugs consisting of the thiazole ligands and some physiologically active metal ions, see: Addison et al. (1984); Bolos et al. (1999); Chang et al. (1982); Dea et al. (2008). For related structures, see: Zhang et al. (2008a,b); Sen et al. (1997).

Experimental

Crystal data
$\left[\mathrm{Zn}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$
$M_{r}=397.77$
Monoclinic, C2/c
$a=11.715$ (2) A
$b=9.822$ (2) A
$c=12.580$ (3) \AA
$\beta=91.24$ (3) ${ }^{\circ}$
$V=1447.2(5) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation
$\mu=2.01 \mathrm{~mm}^{-1}$
$T=295 \mathrm{~K}$
$0.12 \times 0.10 \times 0.08 \mathrm{~mm}$

Data collection

Bruker APEXII CCD area-detector
4633 measured reflections 1742 independent reflections 1214 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.042$
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
$T_{\text {min }}=0.794, T_{\text {max }}=0.856$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041 \quad 101$ parameters
$w R\left(F^{2}\right)=0.101 \quad$ H-atom parameters constrained
$S=1.02$
1742 reflections
$\Delta \rho_{\text {max }}=0.37 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.43 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry $\left(\AA^{\circ},^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O}^{2}-\mathrm{H} 3 \cdots \mathrm{O} 2^{\mathrm{i}}$	0.85	1.82	$2.664(3)$	170
$\mathrm{~N} 2-\mathrm{H} 1 A \cdots 1^{\mathrm{ii}}$	0.86	2.08	$2.822(4)$	145
$\mathrm{~N} 2-\mathrm{H} 1 B \cdots \mathrm{O} 2^{\text {iii }}$	0.86	2.00	$2.844(4)$	169

Symmetry codes: (i) $x+\frac{1}{2}, y-\frac{1}{2}, z$; (ii) $-x+1, y,-z+\frac{1}{2}$; (iii) $x+\frac{1}{2},-y+\frac{3}{2}, z+\frac{1}{2}$.

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINTPlus (Bruker, 2005); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The National Natural Science Foundation of China (No. 20701010), the Natural Science Foundation of Guangxi Zhuangzu Autonomous Region (No. 0728094) and the Department of Education of Jiangxi Province [grant No. GanJiaoJiZi (2007)348] are acknowledged.

[^0]
References

Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. \& Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.

Bolos, C. A., Fanourgakis, P. V., Christidis, P. C. \& Nikolov, G. S. (1999). Polyhedron, 18, 1661-1668.
Bruker (2005). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Chang, C. K., Myoung, S. K. \& Ward, B. (1982). Chem. Commun. pp. 716-719.
Dea, S., Adhikari, S., Tilak-Jain, J., Menon, V. P. \& Devasagayam, T. P. A. (2008). Chem. Biol. Interact. 173, 215-223.

Sen, S., Mitra, S., Kundu, P., Saha, M. K., Krüger, C. \& Bruckmann, J. (1997). Polyhedron, 16, 2475-2481.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Zhang, L.-J., Shen, X.-C. \& Liang, H. (2008a). Acta Cryst. E64, m1248.
Zhang, L.-J., Shen, X.-C. \& Liang, H. (2008b). Acta Cryst. E64, m1413-m1414.

supplementary materials

Acta Cryst. (2009). E65, m1517 [doi:10.1107/S1600536809045589]

Bis(2-aminothiazole-4-acetato)aquazinc(II)

L.-J. Zhang, X.-C. Shen, Y. Yang and H. Liang

Comment

Some potential metal-based drugs consisting of the thiazole ligands and some physiologically active metal ions are attracting more and more attention due to their potentially higher pharmacological activity than pure thiazole ligands (Addison et al., 1984; Bolos et al., 1999; Chang et al., 1982; Dea et al., 2008). Recently, we also made our efforts to synthesize such a class of complexes and have obtained two single crystals containing 1,3-thiazole ring (Zhang et al. 2008a,b). The evident coordination activity of ethyl 2-aminothiazole-4-acetate (EATA) has been shown using AgNO_{3} as metal salt because colourless crystals were obtained in high yield overnight even at room temperature. Herein, a new five-coordinated title complex $\mathrm{Zn}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)$, \mathbf{I}, was synthesized using EATA and ZnSO_{4} as starting materials under the aid of ultrasonic irradiation. The 2-amino-4-thiazole acetate (ATA) ligand in complex I possibly formed in situ by acidic hydrolysis of EATA under ultrasonic irradiation because the ethanol/water solution of EATA is normally slightly acidic due to the present of Zn^{2+} solution.

The resulting Zn complex is built up from distorted square-pyramidal $\mathrm{N} 2 \mathrm{O} 2+\mathrm{O}$ units (Sen et al. 1997), the central Zn atom is five-coordinated by two N and three O atoms $[\mathrm{Zn}-\mathrm{N}=2.047$ (3) $\AA ; \mathrm{Zn}-\mathrm{O}=2.099$ (2) \AA and 1.974 (4) \AA]. Besides one O atom from water molecule, two $A T A$ ligands provide two N and two O atoms as coordinated atoms (Fig. 1). In the crystal structure, the intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 1) connect these molecules into a infinite three-dimensional framework (Fig. 2).

Experimental

The ethyl 2-aminothiazole-4-acetate (EATA) ($1 \mathrm{mmol}, 0.186 \mathrm{~g}$) was dissolved in 5 ml of ethanol under magnetic stirring, followed by addition of 5 ml of distilled water. Then, $\mathrm{ZnSO}_{4}(1 \mathrm{mmol}, 0.170 \mathrm{~g})$ was added and dissolved after a 10-minutes ultrasonic treatment. The resulting pale-yellow solution was filtered and stayed at room temperature for half a month. Large amounts of colourless block single crystals were obtained in about 40% yield (based on Zn).

Refinement

All hydrogen atoms attached on C, N and O atoms have been refined in the riding mode on their carrier atom, with $\mathrm{C}-\mathrm{H}=$ $0.93-0.97 \AA, \mathrm{~N}-\mathrm{H}=0.86 \AA, \mathrm{O}-\mathrm{H}=0.85 \AA$ and $U_{\mathrm{iso}}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C}, \mathrm{N})$ or $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O})$.

supplementary materials

Figures

Fig. 1. View of title molecular complex with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as a small spheres of arbitrary radius. Symmetry codes: (i) $-x+1, y,-z+1 / 2$.

Fig. 2. The crystal packing of \mathbf{I}, showing formation of the three-dimensional network structure via the intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds as denoted with dashed lines. All other hydrogen atoms were omitted for clarity.

Bis(2-aminothiazole-4-acetato)aquazinc(II)

Crystal data

$\left[\mathrm{Zn}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{1}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}_{1}\right)\right]$

$M_{r}=397.77$
Monoclinic, C2/c
Hall symbol: -C 2yc
$a=11.715$ (2) \AA
$b=9.822(2) \AA$
$c=12.580(3) \AA$
$\beta=91.24$ (3) ${ }^{\circ}$
$V=1447.2(5) \AA^{3}$
$Z=4$
$F_{000}=808$
$D_{\mathrm{x}}=1.826 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 1742 reflections
$\theta=2.7-25.5^{\circ}$
$\mu=2.01 \mathrm{~mm}^{-1}$
$T=295 \mathrm{~K}$
Block, colourless
$0.12 \times 0.10 \times 0.08 \mathrm{~mm}$

Data collection

Bruker APEXII CCD area-detector
diffractometer
Radiation source: fine-focus sealed tube
Monochromator: graphite
$T=295 \mathrm{~K}$
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
$T_{\text {min }}=0.794, T_{\text {max }}=0.856$
1742 independent reflections
1214 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.042$
$\theta_{\text {max }}=28.3^{\circ}$
$\theta_{\min }=2.7^{\circ}$
$h=-15 \rightarrow 9$
$k=-10 \rightarrow 12$
$l=-16 \rightarrow 16$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041$
$w R\left(F^{2}\right)=0.101$
$S=1.02$
1742 reflections
101 parameters

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained

$$
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.046 P)^{2}\right]
$$

where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\max }=0.37$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.42$ e \AA^{-3}

Primary atom site location: structure-invariant direct methods

Extinction correction: none

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
Zn1	0.5000	$0.77073(6)$	0.2500	$0.03185(19)$
S1	$0.42899(9)$	$0.81081(12)$	$0.60112(7)$	$0.0498(3)$
O1	$0.32429(19)$	$0.7822(3)$	$0.21472(18)$	$0.0392(6)$
O2	$0.16766(19)$	$0.9045(3)$	$0.19131(17)$	$0.0411(6)$
O3	0.5000	$0.5698(4)$	0.2500	$0.0499(10)$
H3	0.5551	0.5241	0.2253	0.075^{*}
N1	$0.4607(2)$	$0.8338(3)$	$0.3999(2)$	$0.0329(7)$
N2	$0.6077(3)$	$0.7192(4)$	$0.4935(2)$	$0.0536(9)$
H1A	0.6459	0.7073	0.4366	0.064^{*}
H1B	0.6340	0.6893	0.5534	0.064^{*}
C5	$0.2579(3)$	$0.8773(4)$	$0.2413(2)$	$0.0302(8)$
C1	$0.5089(3)$	$0.7835(4)$	$0.4888(3)$	$0.0382(8)$
C3	$0.3572(3)$	$0.8988(4)$	$0.4224(3)$	$0.0349(8)$
C2	$0.3275(3)$	$0.8960(4)$	$0.5241(3)$	$0.0432(9)$
H2	0.2612	0.9346	0.5502	0.052^{*}
C4	$0.2909(3)$	$0.9663(4)$	$0.3346(3)$	$0.0417(9)$
H4A	0.3355	1.0420	0.3087	0.050^{*}
H4B	0.2217	1.0037	0.3640	0.050^{*}

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zn 1	$0.0295(3)$	$0.0373(4)$	$0.0286(3)$	0.000	$-0.0023(2)$	0.000
S 1	$0.0541(7)$	$0.0690(8)$	$0.0262(5)$	$-0.0060(5)$	$-0.0011(4)$	$0.0010(4)$
O 1	$0.0309(13)$	$0.0479(16)$	$0.0384(14)$	$0.0085(11)$	$-0.0078(11)$	$-0.0132(12)$
O 2	$0.0339(14)$	$0.0525(17)$	$0.0365(14)$	$0.0091(11)$	$-0.0070(11)$	$-0.0076(12)$
O 3	$0.031(2)$	$0.034(2)$	$0.085(3)$	0.000	$0.0120(18)$	0.000
N 1	$0.0329(16)$	$0.0388(18)$	$0.0266(14)$	$0.0008(13)$	$-0.0058(12)$	$0.0007(12)$
N 2	$0.049(2)$	$0.075(3)$	$0.0363(18)$	$0.0228(18)$	$-0.0075(15)$	$0.0126(17)$
C 5	$0.0248(17)$	$0.039(2)$	$0.0272(17)$	$-0.0004(14)$	$-0.0009(13)$	$0.0011(14)$
C 1	$0.044(2)$	$0.043(2)$	$0.0274(18)$	$-0.0075(17)$	$-0.0048(15)$	$0.0016(15)$
C 3	$0.0353(19)$	$0.036(2)$	$0.0331(19)$	$-0.0005(15)$	$-0.0062(14)$	$-0.0086(15)$
C 2	$0.039(2)$	$0.054(3)$	$0.037(2)$	$-0.0001(18)$	$-0.0008(16)$	$-0.0158(17)$
C 4	$0.041(2)$	$0.042(2)$	$0.042(2)$	$0.0084(16)$	$-0.0086(16)$	$-0.0108(17)$

Geometric parameters (\AA, ${ }^{\circ}$)

Zn1-O3	1.974 (4)
Zn1-N1	2.047 (3)
$\mathrm{Zn} 1-\mathrm{N} 1^{\text {i }}$	2.047 (3)
$\mathrm{Zn} 1-\mathrm{O} 1^{\text {i }}$	2.099 (2)
Zn1-O1	2.099 (2)
S1-C1	1.733 (4)
S1-C2	1.733 (4)
O1-C5	1.266 (4)
O2-C5	1.247 (3)
O3-H3	0.8500
N1-C1	1.336 (4)
$\mathrm{O} 3-\mathrm{Zn} 1-\mathrm{N} 1$	107.61 (8)
O3-Zn1-N1 ${ }^{\text {i }}$	107.61 (8)
$\mathrm{N} 1-\mathrm{Zn} 1-\mathrm{N} 1^{\text {i }}$	144.78 (17)
$\mathrm{O} 3-\mathrm{Zn} 1-\mathrm{O} 1^{\text {i }}$	93.07 (7)
$\mathrm{N} 1-\mathrm{Zn} 1-\mathrm{O} 1^{\text {i }}$	91.60 (10)
$\mathrm{N} 1^{\text {i }}-\mathrm{Zn} 1-\mathrm{Ol}{ }^{\text {i }}$	86.54 (10)
O3-Zn1-O1	93.07 (7)
$\mathrm{N} 1-\mathrm{Zn} 1-\mathrm{O} 1$	86.54 (10)
N1 ${ }^{\text {i }}$ - $\mathrm{Zn} 1-\mathrm{O} 1$	91.60 (10)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Zn} 1-\mathrm{O} 1$	173.87 (14)
C1-S1-C2	89.73 (17)
C5-O1-Zn1	126.1 (2)
$\mathrm{Zn} 1-\mathrm{O} 3-\mathrm{H} 3$	121.8
$\mathrm{H} 3-\mathrm{O} 3-\mathrm{H} 3{ }^{\text {i }}$	116.3
C1-N1-C3	110.5 (3)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{Zn} 1$	124.0 (3)
$3-\mathrm{N} 1-\mathrm{Zn1}$	22.4

$\mathrm{N} 1-\mathrm{C} 3$	$1.404(4)$
$\mathrm{N} 2-\mathrm{C} 1$	$1.319(5)$
$\mathrm{N} 2-\mathrm{H} 1 \mathrm{~A}$	0.8600
$\mathrm{~N} 2-\mathrm{H} 1 \mathrm{~B}$	0.8600
$\mathrm{C} 5-\mathrm{C} 4$	$1.507(5)$
$\mathrm{C} 3-\mathrm{C} 2$	$1.335(4)$
$\mathrm{C} 3-\mathrm{C} 4$	$1.492(5)$
$\mathrm{C} 2-\mathrm{H} 2$	0.9300
$\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	0.9700
$\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$	0.9700
$\mathrm{H} 1 \mathrm{~A}-\mathrm{N} 2-\mathrm{H} 1 \mathrm{~B}$	120.0
$\mathrm{O} 2-\mathrm{C} 5-\mathrm{O} 1$	$122.9(3)$
$\mathrm{O} 2-\mathrm{C} 5-\mathrm{C} 4$	$118.0(3)$
$\mathrm{O} 1-\mathrm{C} 5-\mathrm{C} 4$	$119.0(3)$
$\mathrm{N} 2-\mathrm{C} 1-\mathrm{N} 1$	$124.7(3)$
$\mathrm{N} 2-\mathrm{C} 1-\mathrm{S} 1$	$121.8(3)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{S} 1$	$113.6(3)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{N} 1$	$115.4(3)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$125.2(3)$
$\mathrm{N} 1-\mathrm{C} 3-\mathrm{C} 4$	$119.5(3)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{S} 1$	$110.8(3)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	124.6
$\mathrm{~S} 1-\mathrm{C} 2-\mathrm{H} 2$	124.6
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$116.1(3)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	108.3
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	108.3
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$	108.3

sup-4

supplementary materials

C1—N2-H1A	120.0	C5-C4-H4B	108.3
C1—N2—H1B	120.0	H4A-C4-H4B	107.4
Symmetry codes: $(\mathrm{i})-x+1, y,-z+1 / 2$.			

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 3 — \mathrm{H} 3 \cdots 2^{\mathrm{ii}}$	0.85	1.82	$2.664(3)$	170
$\mathrm{~N} 2 — \mathrm{H} 1 \mathrm{~A} \cdots \mathrm{O}^{\mathrm{i}}$	0.86	2.08	$2.822(4)$	145
$\mathrm{~N} 2 — \mathrm{H} 1 \mathrm{~B} \cdots \mathrm{O} 2^{\mathrm{iii}}$	0.86	2.00	$2.844(4)$	169

Symmetry codes: (ii) $x+1 / 2, y-1 / 2, z$; (i) $-x+1, y,-z+1 / 2$; (iii) $x+1 / 2,-y+3 / 2, z+1 / 2$.

supplementary materials

Fig. 1

Fig. 2

[^0]: Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2177).

